
www.manaraa.com

J. Econom. Meth. 2016; 5(1): 179–193

Teaching Corner

Daniel J. Henderson and Christopher F. Parmeter*

Teaching Nonparametric Econometrics  
to Undergraduates
DOI 10.1515/jem-2015-0007
Previously published online November 6, 2015

Abstract: Given the popularity of nonparametric methods in applied econometric research, it is beneficial if 
students have exposure to these methods. We provide a simple, heuristic overview that can be used to discuss 
smoothing and nonparametric density and regression estimation suitable for an undergraduate economet-
rics class. We make connections to existing methods known to students (e.g. weighted least-squares through 
the idea of local weighting) which allows easy access to these methods. Examples are given as well as a dis-
cussion of available methods across an array of statistical software to fit the needs of educators.
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1  Introduction
In recent years high level econometric research has embraced nonparametric methods. The ability to glean 
information from the data while minimizing the number of parametric assumptions placed on the data gen-
erating process has clear appeal. However, the teaching of nonparametric methods still lags behind, as many 
popular undergraduate textbooks make little to no mention of kernel smoothing methods. Moreover, even 
popular graduate texts which include chapters on nonparametric estimation list these chapters as optional 
and course outlines rarely include this coverage or leave adequate time to detail these methods inside the 
classroom.

Undoubtedly, one of the main reasons for resistance to broach nonparametric methods in the economet-
rics classroom is the fact that, at least until recently, many popular software routines did not include auto-
mated, “black box” implementation of even basic density and regression estimators. Without this software, a 
heavy computing burden is placed on both the professor and the students since they need to write their own 
code to implement these methods, which can go well outside the scope of many undergraduate economet-
rics classes.1 Further, the perceived complicated intuition of nonparametric methods also clouds the room. 
From our perspective, nonparametric methods are no more difficult to conceptualize than their classical 
parametric counterparts, once the issue of smoothing is related to students. Moreover, a simple weighted 
least-squares interpretation exists for kernel regression that can be easily relayed to students once discussion 
of weighted least-squares for the linear regression model has been covered.

Relaxing functional form specifications offers an interesting avenue to open discussion in the classroom. 
Consider the recent report of Collins (2012) that documents a dramatic shift in the distribution of starting 
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salaries for law graduates between 1991 and 2011. In 1991, the density was compressed with a median salary 
of $40,000 and three (somewhat distinct) modes, at $30,000, $50,000 and $75,000. By 2011, the density 
had considerably widened with a median starting salary of $60,000 and two distinct modes, at $50,000 and 
$160,000. An interesting classroom question is what precipitated this shift in starting salaries? More impor-
tantly, this example also serves to illustrate the pitfalls of always resorting to common parametric specifi-
cations when engaging in econometric estimation. If the data were simply fit with a normal or log-normal 
distribution, these modes would be completely obscured. Using nonparametric methods, the researcher has 
the ability to reveal these modes, which then opens the possibility for discussing why these modes appear.

The remainder of this review provides background intuition for both kernel density and regression esti-
mation, providing details that can be quickly discerned at the undergraduate level. This leads to density and 
regression examples that can easily be used in the classroom. Finally, a discussion of available econometric 
software which allows easy access to these methods is discussed.

2  Discussing Smoothness
What is smoothness and how does it impact/influence nonparametric estimation? Given the lack of paramet-
ric assumptions, all underlying structure must be pulled directly from the data. However, without a proper 
notion of location, it is difficult to connect different data points as being close, or “local” to one another. In 
our experience, a key to discussing nonparametric methods is getting the students to understand the idea 
of local weighting. Once local weighting is understood, construction of a density or a regression curve is not 
nearly as difficult because these methods can always be linked back to similar parametric concepts.

When we think of constructing the sample mean, 
=

= ∑ 1

1 ,n

ii
x x

n
 we treat all of our observations equally. 

Notice that we could have written the average as 
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x x n p x  where pi = 1/n. Kernel methods, and 

nonparametric methods more generally, seek to change how we weight observations, based on the location 
of an observation to the point of interest. In the context of the unconditional mean, there is no “point” of 
interest and so equal weighting is appropriate. However, if we desire to know the density of individuals near 
a given point, then our notion of “nearness” becomes important for how we treat different observations. It 
is precisely this notion of nearness that smoothing attempts to capture and allows the “data to speak for 
themselves”.

While this discussion may seem to suggest that the results of a data analysis are too dependent on the 
choices made by researchers and as such key insights may be driven by arbitrary choices about the degree of 
smoothness, we argue that there is no more arbitrariness in this process of statistical estimation than there is 
in parametric analysis. The choice of parametric model is typically as ad hoc as picking the smoothing para-
meter; sometimes seemingly at random in applied economics. This is because a majority of economic theories 
rarely yield closed form solutions about the relationship of interest. It is just as likely that key insights into an 
important economic relationship are driven via the choice of parametric density assumed for the data or the 
specification of the conditional mean in a regression study.

3  Density Estimation
To formalize our discussion on how we can construct a nonparametric estimator of the unknown density, lets 
first consider a crude way to approximate a density. The simplest way to nonparametrically estimate a density 
without assuming a specific family, such as the normal, is to use a histogram. Specifically, for a univariate 
random variable x with support S(x) = [a, b], divide S(x) into J equally spaced boxes. In this setup, each box 
will have width h = (b–a)/J and we will call h our binwidth. The intervals can be described as

+ − + = …( ( 1) , ] , for 1, 2, , .a j h a jh j J
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Let nj denote the number of observations from the sample that fall in interval j. This can be summarized as
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where 1{A} is the indicator function that takes the value 1 if the event A is true and zero otherwise. The propor-
tion of observations falling into the jth interval (bin) is nj/n. The expectation of the proportion of observations 
in the jth interval (E[nj]/n)) is then
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where f(x) is the density of x, which is what we seek to estimate. The first equality in (1) follows by the defini-
tion of the empirical cumulative distribution function and the second is from the relationship between the 
cumulative distribution and the probability density function.

Now, if we assume that J is very large (h is very small), then on the interval (a+(j–1)h, a+jh], we can take 
f(x) to be approximately constant. This suggests that a crude estimator of a density function is

	
=ˆ( ) .jn

f x
nh �

(2)

Unfortunately, our estimator is biased in finite samples, discontinuous and nondifferentiable. We would like 
an estimator of our density that is both consistent and smooth.

Relatively simple calculus can show that the bias is directly influenced by the binwidth (same direction) 
and the variance is influenced inversely by the binwidth. Further, the variance is influenced by the sample 
size. Thus, if we hold h fixed, while there is no improvement in the bias, the variance will decrease as the 
sample size increases. This conflict between controlling the bias and variance of the crude density estima-
tor is at the heart of nonparametric estimation. There is always a delicate interplay between these two that 
is directly controlled via the binwidth. If we require that nh→∞ and h→0 as n→∞, then we see that both 
our bias and variance decrease, suggesting that our estimator converges in the mean square error sense. 
In essence, as we get more information about the sample (n increases), we can further partition S(x), thus 
decreasing the binwidth, which lowers bias. At the same time, we cannot lower h so much so that it offsets 
the gains in information that we obtain, thus h/n→0. It is common to refer to nh as the “local sample size.” 
Roughly speaking, it is the actual amount of data that is being passed to the estimator.

When we calculate our density using this crude approximation, we take no stock of where the data are 
located. Thus, since our density estimate is constant in a given bin, certain points will be estimated more 
precisely in the bin than others. We can construct a better estimator that takes into account the location of the 
observations to further reduce the bias that is inherent in our current density estimator.

3.1  The Kernel Density Estimator

The histogram placed evenly spaced boxes over S(x), making no distinction of where the data was located. 
To avoid this issue, and hence improve the bias, we can instead place boxes along S(x) that are centered 
on each observation. If we label our point of interest as x, then using boxes that are centered over our 
sample observations, the number of observations that are within 2h (the centered binwidth) of our point 
of interest is

=
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The corresponding probability of falling in this box (centered on x) is nx/n. A natural estimator of our density 
is then
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where the “2” shows up because we are looking for data both to the right (x+h) and left (x–h) of x. For conveni-
ence, we can write our density estimator as
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For the discussion that follows, we are going to generalize our estimator slightly. First, we will replace 
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 in (3) with a “kernel” function k(u) where
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Note that we have written k(u) for notational convenience. In general, you should take u to be (xi–x)/h, which 
represents how “local” the observation xi is relative to the point of construction, x. The use of the word kernel 
may be stark for undergraduates; the easiest approach is simply to describe the kernel as a local weighting 
function. The kernel used above is known as the uniform kernel.

We see that one issue with our use of the uniform kernel is that it is discontinuous at –1 and 1 and has 
derivative 0 everywhere except at these two points (where it is undefined). This suggests that our density 
estimator will not be smooth.

We can develop a more general density estimator based off the intuition afforded from the naïve density 
estimator. Recall that we used the kernel function representation for the naïve density estimator, where the 
kernel function was equivalent to the uniform weighting function on the interval [–1, 1]. To allow for general 
discussion of density estimation, in what follows, we use the generic definition for a kernel density estimator
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Given the generality of this definition regarding what the kernel function (k(u)) may look like, we call h a 
bandwidth as opposed to a binwidth. In general, we will select kernel functions that are much smoother than 
the uniform kernel. The bandwidth now corresponds to the smoothness of the estimator instead of the direct 
width that the kernel covers.

There are many possibilities for kernel functions, but we typically assume they possess the following 
properties: (1) integrate to one, (2) are symmetric and (3) have a finite variance. This is why we often use prob-
ability density functions for kernels.

Table 1 presents several of the most popular kernels employed in kernel density estimation. The 
biweight kernel is occasionally referred to as the quartic kernel (since it is a quartic function in u), while the 
Epanechnikov kernel obtained its name from Epanechnikov (1969), who showed several optimality properties 
for this specific kernel. The most popular kernel in econometrics is the Gaussian kernel as it has derivatives of 
all orders (and economists are typically interested in higher-order derivatives).

3.2  Practical Considerations

From an applied standpoint, the two most important choices facing the practitioner are the choice of kernel 
and the choice of smoothing parameter. A simple exercise is to present students with a single dataset and 
have them keep the bandwidth fixed but change the kernel. In most instances the change in the estimated 
density will be minimal. This invariance of the density estimator serves to demonstrate that the choice of 
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kernel has little impact on what we learn. However, a similar exercise keeping the kernel fixed but changing 
the bandwidth can reveal quite vividly the impact of location and smoothing. In many instances moderate 
changes in the bandwidth can lead to large visual changes in the underlying density.

While many may be uncomfortable with an estimator that depends heavily on the choice of a parameter 
that is of no real empirical interest, this is no different than pre-selection of the parametric density to fit 
with the data at hand. What is key is that the bandwidth is selected in such a fashion that it possesses desir-
able statistical properties. For example, we could use a data-driven approach such as least-squares cross-
validation which is known to minimize the squared distance between the true underlying density and the 
estimated density. Regardless of which bandwidth is used, students can readily see the importance of the 
bandwidth on what can be learned about the underlying shape of the density. Further, many applied studies 
use kernel density estimates to set the table for a more in-depth discussion of an interesting economic phe-
nomena. For example, Quah (1993) uses the emerging bimodality in the distribution of worldwide output to 
refute the widely accepted notion of economic convergence.

To illustrate the importance of the bandwidth on the statistical properties of the kernel density estimator, 
consider Figure 1. Here we present the mean squared error (MSE) of the kernel density estimator for various 

Table 1: Commonly Used Kernels.

Kernel   k(u)

Uniform   1 {| | 1}
2

u ≤1

Epanechnikov  23(1 ) {| | 1}
4

u u− ≤1

Biweight   2 215 (1 ) {| | 1}
16

u u− ≤1

Triweight   2 335(1 ) {| | 1}
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u u− ≤1
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Figure 1: Mean Squared Error of the Kernel Density Estimator for Various Bandwidths and Sample Sizes when the Data are 
Normally Distributed.
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combinations of sample size (n) and bandwidth (h) for data from a normal density. This figure makes it clear 
that for a fixed bandwidth, a larger sample size results in a decrease in MSE (working through a reduction in 
the variance only), while for a fixed sample size, decreasing the bandwidth can either increase or decrease 
MSE, given the opposite effects through the bias and variance.

This is instructive for students as it suggests that the bandwidth is not just some parameter to set, but 
requires careful consideration on its choice. A potential link that can be drawn is with the Gauss-Markov 
theorem, whereby the OLS estimator is favored in the class of linear and unbiased estimators given that it 
has the smallest variance. Here, because we have a bias, we must trade-off one for the other. We can also 
illustrate this in a similar manner by fixing the sample size, and focusing attention on a single point of the 
density. Figure 2 presents the MSE, squared bias and variance of the kernel density estimator for different 
values of the bandwidth with a fixed sample size. Here all calculations are for the point f(0.25). It is clear that 
as h increases, the variance decreases, but the squared bias increases. Where to fix h is determined by the 
lowest value of MSE. Students with a good statistical background will immediately understand this example 
from discussions on comparing biased estimators. With two biased estimators, we cannot solely compare 
variances, so we look at MSE; here we are doing exactly that.

Given the importance of the bandwidth, it is clear that its choice is important. Most statistical software 
that constructs kernel density estimators select the bandwidth in some way that is optimal. While there are 
many definitions of optimality, in general, most criterion circle back to some notion of balancing between 
bias and variance. Instructors should be sure to emphasize to students how the software they are using 
selects the bandwidth. For example, in Stata the base kdensity operation uses a rule-of-thumb, which 
has almost no connection to optimality unless the data are actually normally distributed. In our own work, 
we primarily use least-squares cross-validation.

3.3  Construction of a Kernel Density

Suppose we wished to teach students how to construct a kernel density estimate. We could easily resort to any 
of the available software applications discussed in Section 5. However, building a kernel density estimator by 
hand is (relatively easy and) instructive and allows students to “get their hands dirty.”

Here is a simple example in the R syntax. First, we construct a kernel function, in this case, the Epanech-
nikov, for a generic point (or vector of points) x.i and an evaluation point x:
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Figure 2: Mean Squared Error, Squared Bias, and Variance of the Kernel Density Estimator for Various Bandwidths with Fixed 
Sample Size when the Data are Normally Distributed.
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kernel  < - function(x.i,x,h) {

u  < - (x.i-x)/h

return(0.75*(1-uˆ2)*ifelse(abs(u) <  = 1,1,0))

}

Second we need to evaluate this kernel, for a given bandwidth, for each point of interest for the unknown 
density, in this case x1, …, xn. Given that this operation is carried out over each data point, we will embed the 
process in a loop:
fhat  < - numeric()

for(j in 1:n) {

fhat[j]  < - mean(kernel(x.i,x[j],h))/h

}

The object fhat is storage for our estimates of the unknown density. The loop is required so that we evaluate 
the density for each observation. Lastly, if the data x1, …, xn were ordered from smallest to largest, then we 
could plot the x (sorted) vector against fhat to see the estimated density.

While we have presented R code, any statistical language that allows you to construct a loop and create 
their own function could easily be used. For example, in Excel, density estimation can easily be carried out 
using nothing more then row and column operations coupled with the AVERAGE function.

3.4  An Empirical Example – Lean Body Mass

We use the lean body mass index from the Australian Institute of Sport dataset taken from Cook and Weisberg 
(1994). This variable’s distribution was also analyzed in Jones, Marron, and Sheather (1996). The main focus 
of their study was on the impact of bandwidth selection and what it revealed about the underlying structure 
of lean body mass. It was determined that the distribution of lean body mass had two distinct modes, which 
was intuitive given that it appeared there existed two distinct sub-populations in the data, one for males and 
one for females (see their Figure 2, page 405).

Here we show how to easily demonstrate the impact of kernel choice and bandwidth choice on what is 
learned from the kernel density estimator with this dataset. Figure 3 uses a bandwidth of 2.9, but switches 
between an Epanechnikov, Gaussian and Biweight kernel. All three density estimates are minimally different 
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Figure 3: Sensitivity of Kernel Density Estimator to Choice of Kernel, Bandwidth Fixed at 2.9.
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and evince two distinct modes. Figure 4 uses only the Epanechnikov kernel but changes the bandwidth from 
1 to 2 to 3. Here what we see depends radically on the bandwidth used. The estimated density is quite irregular 
with many local modes using the smallest bandwidth, whereas the largest bandwidth suggest a heavily right 
skewed density with a single mode.

The benefit of using an example of this nature is that it can be used to discuss the importance of kernel 
choice (not that important) and bandwidth choice (overly important). Secondly, the reasons for the two 
modes in the distribution of lean body mass offers an interesting point of discussion in a classroom environ-
ment. What is it about lean body mass that might lead to such an irregular shaped density? Or, is the density 
actually unimodal and the features that are observed due to the selection of the bandwidth?

4  Nonparametric Regression
Regression is the backbone of applied econometric research. Although regression is widespread, the vast 
majority of economic research assumes that regressors enter the conditional mean linearly and that each 
regressor is separable without any theoretical justification. Consider the ubiquitous linear regression setup

	 β β ε= + +0 1i i iy x � (5)

introduced at the start of an applied econometrics course. Little in the way of motivation from economic 
theory or practice justifies this specific relationship. Clearly, the linear relationship makes interpretation easy 
and estimation is straightforward. But what if this setup is incorrect? Here we discuss how to estimate regres-
sion functions where we are unsure of the underlying functional form.

The nonparametric regression estimators that we will describe here will construct an estimate of the 
unknown function in much the same way that we constructed the unknown density, by using a local sample 
for each point. Whereas parametric estimators are considered global estimators (use all data points), non-
parametric kernel regression estimators are local estimators, using a local sample of nearby data points to 
fit a specific parametric model (typically a constant or a line) and then “smooth” each of these local fits to 
construct the global function estimator. This allows you to focus on the local peculiarities inherent in your 
data set while estimating the unknown function without judicious choice of parametric functional form.

To lay the general foundation, we assume that we have a response variable y and a single covariate which 
is used to predict the response, x. y and x are related through the model
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Figure 4: Sensitivity of the Kernel Density Estimator to Bandwidth, an Epanechnikov Kernel is Used in Each Case.



www.manaraa.com

D.J. Henderson and C.F. Parmeter: Teaching Nonparametric Econometrics      187

ε= + = …( ) ,  1, , ,i i iy m x i n

where, for simplicity, we will assume that the sample realizations are distributed i.i.d. for our discussion. In 
general parametric analysis, a functional form for m(·) is assumed known up to a finite-dimensional number 
of unknown parameters. If we assume that m(xi) = α+βxi, then our model can be estimated via ordinary least-
squares (OLS). However, if our parametric specification of the conditional mean deviates from α+βxi, then the 
OLS estimator will likely be biased and inconsistent. Regardless of the exact form of m(x), we can interpret it 
as the the conditional mean of y, E(y|x). Doing so will allow us to develop a simple, nonparametric estimator 
for this quantity using insights from kernel density estimation.

4.1  The Local-Constant Least-Squares Estimator

Here we discuss two distinct approaches to derive a nonparametric kernel estimator of the conditional mean 
in the classroom. Both approaches yield the same estimator. Either approach can be used depending upon 
how the instructor has taught derivation of the parametric OLS estimator.

4.1.1  An Indicator Approach

If we think of constructing a naïve estimator for the conditional mean of y (m(x)), we could average over 
observations that are close to x. That is, our naïve estimator is

∈
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where S(x) is the set of observations that are close to x and nx is the cardinality of S(x). The elements of S(x) 
can be represented with a uniform kernel and the cardinality as 
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We can arrive at our kernel estimator by replacing the uniform kernel with the general kernel form, 
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(6)

4.1.2  Kernel Regression on a Constant

An alternative derivation for the nonparametric conditional mean estimator will shed light into its common 
name, the local-constant least-squares estimator (LCLS). We can think of estimating the unknown function 
(m(x)) as that which minimizes the weighted squared distance between the function itself and y. This is akin 
to weighted least-squares, except that the weights will vary by x instead of being fixed across all values of x. 
Think of how we construct the OLS parameter estimator. We solve
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by setting the first-order conditions equal to zero and obtaining the slope and intercept estimators.
If we instead replace α+βxi with a and introduce kernel weights, we have
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Solving this yields
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which is identical to (6). We essentially regress y locally, on a constant, to determine our function at a point, 
hence local-constant least-squares.

4.2  Connecting to Weighted Least-Squares

An elegant feature of the local constant estimator is that it can be interpreted as nothing more than a gen-
eralized least-squares estimator. In this case, the estimator is simply the regression of y on a constant, with 
weights that change depending upon the point of interest. This offers professors an interesting pedagogical 
avenue whereby students can code up a kernel regression estimator using “black box” software that performs 
weighted regression.

Consider how this might be done in R. First we construct a Gaussian kernel function for a generic point 
(or vector of points) x.i and evaluation point x:
kernel  < - function(x.i, x, h) {

u  < - (x.i-x)/h

return(dnorm(u)/h)

}

where dnorm(u) returns the value of the standard normal density evaluated at u.
Second we need to estimate the (nonparametric) model for each point of interest, in this case x1, …, xn. 

We do so using the least-squares command, invoking the weights option. This is done over each data point so 
we embed the process in a loop:
mhat  < - numeric()

for(j in 1:n) {

model  < - lm(y~1,weights = kernel(x.i, x[j], h))

mhat[j]  < - coef(model)

}

The object mhat is storage for our fitted values of the unknown conditional mean. Note that instead of 
running a single regression, as is the case with parametric regression, we run n regressions, one for each 
observation (i.e. evaluation point). The only thing that changes is the point which we weight over. Again, 
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while we have presented R code, any statistical language that allows weights to be fed into a linear regression 
solver can be deployed.

This approach could also be performed in Excel using the LINEST regression solver. In this case weights 
cannot be fed directly into the regression software. However, it is possible to construct weighted versions of 
y and the intercept, i.e. divide y and 1 each by ,iw  where wi is the kernel weight for the ith observation. For 
each observation, repeatedly call LINEST, setting the const argument to FALSE.

4.3  Multiple Covariates

Our previous discussion was for the case of a single covariate, which keeps the notation simple, but is far 
from how we commonly use regression models in both the classroom and in practice. More broadly, we 
have access to a range of covariates. It is at this stage where the limitations of nonparametric kernel regres-
sion methods come to light; presentation issues of estimates in high dimensional settings and the curse 
of dimensionality. Make no mistake, kernel regression works in an almost identical fashion whether there 
is a single covariate or ten, one simply needs to adjust how the local weights are constructed. The most 
common approach would be to use what is called a product kernel, which is nothing more than successive 
multiplication of the individual covariate weights. Once these weights have been calculated, kernel regres-
sion would proceed in exactly the same fashion as detailed above. This makes the idea of application of the 
estimator simple for students. What can be more challenging is to discuss the best way to interpret one’s 
estimates; see Li and Racine (2007) and Henderson and Parmeter (2015) for more advanced discussion in 
this realm.

4.4  Age-Earnings Profile

The seminal work of Jacob Mincer on human capital suggested that the logarithm of a worker’s earnings 
is concave in their age (potential work experience). Concavity is consistent with the investment behavior 
implied by the optimal distribution of human capital investment over a worker’s life cycle. A voluminous 
literature within labor economics has generally specified age-earnings profiles as quadratic (Heckman and 
Polachek 1974), consistent with concavity. Murphy and Welch (1990) challenged the conventional empirical 
strategy of specifying a quadratic in age for an age-earnings profile. Their work suggests that a quadratic 
specification in age understates early career earnings growth by 30–50% and overstates mid-career earnings 
growth by 20–50%. An analysis of residual plots from their estimated quadratic relationships (as well as 
several statistical tests) reveal patterns suggesting substantial differences from this specification. They advo-
cate on behalf of a quartic age-earnings profile and find that this specification yields a substantial improve-
ment in fit relative to the common quadratic relationship.

Given that the human capital theory of Mincer does not suggest a particular empirical relationship, 
Pagan and Ullah (1999, Section 3.14.2) considered the use of nonparametric regression techniques to shed 
light on the appropriate link between income and ages [see Basu and Ullah (1992) for a similar study]. 
They provided an example using the 1971 Canadian Census Public Use Tapes consisting of 205 individuals 
who had 13 years of education. Fitting a local-constant kernel regression function (see their Figure 3.4) 
they found a visually substantial difference between the common quadratic specification and their non-
parametric estimates. A “dip” in the age-earnings profile around age 40 suggested that the relationship 
was neither quadratic nor concave. Pagan and Ullah (1999) argue that this “dip” may occur because of 
generational effects present in the cross-section, specifically, pooling workers who have differing earnings 
trajectories.

Here we use the Pagan and Ullah (1999) data and compare a linear, quadratic, and quartic paramet-
ric specification against the local-constant estimator just described. We use a bandwidth of 2.58 with the 
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Gaussian kernel. Figure 5 plots the four different curves. It is clear that the linear relationship does not 
adequately capture Mincer’s concave formulation. While the quadratic curve does, an interesting feature 
appears with both the quartic parametric specification as well as the nonparametric estimator, a dip in the 
relationship between earnings and age around 45. Is this a result of over-fitting or some feature of the data 
that simple linear and quadratic models cannot uncover?

The dip in the relationship allows for open discussion in the classroom upon demonstration. Is this dip 
fictional or is there some economic reason for its presence. The most common argument is that this is a 
cross-section and hence not a true life cycle. Regardless, the appearance of the dip allows the instructor to 
discuss how some parametric models can mimic the shape of nonparametric estimators and that the goal of 
nonparametric methods is to shed light on the potential parametric specification of a relationship and assert 
its robustness, not to rule out all parametric models in hand.

5  Available Software
As we discussed prior, to construct either a kernel density or kernel regression estimator, it is paramount 
that the software have the ability to allow users to change the bandwidth (or have automatic/data driven 
bandwidth selection) so that it is easily discerned the impact of the smoothing parameter on the resulting 
estimates. It is also useful if the software allows for kernel choice.

5.1  Stata

Within Stata, perhaps the most common undergraduate statistics interface currently used, univariate density 
estimation can be engaged through the kdens package, which leverages Stata’s basic kdensity option. A 
key feature of kdens is that a range of kernel function and bandwidth selection mechanisms can be selected 
by the user. Through the moremata package, nine different kernel functions are available, including the 
Epanechnikov and Gaussian kernels.
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Figure 5: Age-Earning Profile for 1971 Canadian Census Public Use Tapes.
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For kernel regression, the lpoly function is the main conduit for nonparametric analysis. lpoly uses 
the Epanechnikov kernel as a benchmark but does allow the user to change to the Gaussian and biweight 
kernels (a few other options are also available). Further, a user defined bandwidth can be used. One down-
side to lpoly is that only a single covariate can be used.

5.2  SAS

The KDE procedure performs either univariate or bivariate kernel density estimation. Unfortunately, PROC 
KDE only uses a Gaussian kernel to compute the resulting density estimate. Data driven bandwidth selection 
is not currently possible directly through KDE, but the BWM option does allow the user to estimate densities 
using a variety of smoothing parameters.

A local-constant regression estimator does not directly exist in SAS. However, the LOESS procedure does 
allow for smoothing fitting of a curve. The LOESS procedure is based on the smoothing method of Cleveland 
and Grosse (1991), which is somewhat different than the methods described here. However, the commonly 
known PROC REG does allow weighting through the WEIGHT option. Here the user could construct kernel 
weights and then embed PROC REG in a loop as discussed earlier for the R syntax.

5.3  EViews

Kernel density estimates are straightforward to construct in EViews. From the drop down menu that appears 
upon selecting View/Graph…, simply select Kernel Density in the Distribution drop down menu. 
This will open up a window with many options that can be selected with the click of a mouse, including the 
option to use seven different kernel weighting functions. The default bandwidth is σ −0.2ˆ1.059* ,xn  which is 
known as the Silverman rule-of-thumb bandwidth, but there is an option to provide a user specified band-
width as well. An additional feature for students and researchers who wish to discern the impact of the 
bandwidth on their estimates is the Bracket Bandwidth option which plots three different kernel density 
estimates using bandwidths 0.5h, h and 1.5h. One unfortunate missing feature is the ability to conduct data-
driven or optimal bandwidth selection within EViews.

Kernel regression in EViews works almost identically to the kernel density menu. We can perform 
univariate kernel regression using one of the seven kernel function options. As with density estimation, a 
feature that is unfortunately missing is data-driven bandwidth selection for the nonparametric regression 
estimator. The default bandwidth is 0.15(max(x)–min(x)) and both the user specified and bracket bandwidth 
options are available. To access the local regression menu in EViews, simply click on Options and work with 
the Scatterplot Customize dialog box.

5.4  R

Out of all of the statistical software discussed in this section, R has perhaps the most comprehensive col-
lection of nonparametric methods available to the user. Notably, the np (Hayfield and Racine 2008) and 
KernSmooth (Wand 2013) packages offer an array of cutting edge methods that can quickly implement 
density and regression estimation. The np package is the most comprehensive package of commands to 
engage in nonparametric analysis. For the purposes of an undergraduate lecture on either kernel density esti-
mation or kernel regression, np has facilities for both data driven bandwidth selection, through npudensbw 
and npregbw, as well as direct estimation, through npudens and npreg. The kernel can be picked as either 
the Epanechnikov or Gaussian, using the option ckertype [see Harrison (2008) for a detailed review of all 
of the options available in this package].
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5.5  Excel

Excel does not offer black box estimation of a kernel density or nonparametric regression function. However, 
there is an add-in for Excel, RExcel (http://rcom.univie.ac.at/download.html) which integrates R’s entire set 
of statistical and graphical methods into Excel.

However, a kernel density estimator is easily demonstrated for students without resorting to RExcel. It is 
a relatively easy exercise to have students use column and row operations on their data to construct kernel 
weights, which can then be copy-pasted to develop kernel weights for a range of points. The plotting facilities 
in Excel can then be used to plot the resulting density. Further, the frequency command allows histograms 
to be constructed with data in Excel as well.

5.6  MATLAB

In MATLAB, the Kernel Smoothing Toolbox (Horová, Kolácek, and Zelinka 2012) is available to conduct 
density and regression estimation quickly and efficiently. The K_def() command allows users to define the 
kernel they wish to conduct smoothing, with five different kernels (including Epanechnikov and Gaussian). 
To estimate a univariate kernel density, the ksdens() commands is all that is required.

Kernel regression can also be easily undertaken in the Kernel Smoothing Toolbox using the ksregress() 
command. The local-constant estimator can be implemented in the toolbox and data-driven bandwidth selec-
tion is also an option.

5.7  Other Software Outlets

Outside of commercial software, several other options avail themselves to engaging in nonparametric density 
and regression estimation. EasyReg (Bierens 2014) is freely available for download and can perform kernel 
density estimation and kernel regression with up to two covariates. Unfortunately, no manual for EasyReg 
is available, however, the software offers a variety of guides to help users become acquainted with the inter-
face. Sephton (1998) also offers operational insights for EasyReg for interested instructors/students and 
reviews the software favorably. Another option is the KDE software of Udina (1995) which performs both 
kernel density and kernel regression. KDE is an object-oriented approach built over XLISP-STAT, which is 
a statistically oriented dialect of the Lisp language. The software is freely available, which again makes it a 
competitive alternative relative to commercial software and is thus easy to obtain distribution for a classroom 
environment.

6  Conclusion
This article gave an undergraduate description of nonparametric methods for density and regression esti-
mation as well as reviewed the ability to conduct nonparametric estimation in available statistical software 
packages. We believe that these materials can be taught after covering weighted least-squares. The introduc-
tion of these methods should be beneficial to students continuing on to graduate study as well as those who 
are interested in the private sector after graduation.
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